Acknowledgment. This work was conducted with the generous support of the Cancer Research Campaign (R . J.G.) and the Science and Engineering Research Council, U.K. (M.A.M.). We thank Dr. A. H. Calvert and Dr. A. L. Jackman of the Institute of Cancer Research, Sutton,

Surrey, U.K., for assistance with DHFR inhibition assays.
Supplementary Material Available: Table giving final fractional coordinates and average temperature factors for the non-hydrogen atoms of 29 (2 pages). Ordering information is given on any current masthead page.

Pyrido[3,4-e]-1,2,4-triazines and Related Heterocycles as Potential Antifungal Agents ${ }^{1}$

Marvin F. Reich,* Paul F. Fabio, Ving J. Lee, Nydia A. Kuck, and Ray T. Testa
Infectious Diseases and Molecular Biology Research Section, American Cyanamid Company, Medical Research Division, Lederle Laboratories, Pearl River, New York 10965. Received October 24, 1988

Abstract

The preparation and biological activities of a series of pyrido[3,4-e]-1,2,4-triazines, 1,2,4-triazino[5,6-c]quinolines, and related fused triazines are described. Methyl, amino, and acylamino substituents were placed in the pyridyl ring of the former system. Other structural modifications included various alkyl, cycloalkyl, substituted phenyl, and heterocyclic groups in the 3 -position of these ring systems. In agar dilution assays, actives in this series inhibited strains of Candida, Aspergillus, Mucor, and Trychophyton species at MIC's of $\leq 16 \mu \mathrm{~g} / \mathrm{mL}$.

The incidence of diseases caused by fungi pathogenic to man has increased significantly over the past 30 years. ${ }^{2}$ Superficial infections caused by dermatophytes and Candida species may be extremely uncomfortable or disfiguring but are rarely life threatening. Systemic infections are more severe and can often be fatal, due to the involvement of internal organs and the bloodstream. The deep mycoses (blastomycosis, coccidioidomycosis, histoplasmosis) can affect normal individuals, while opportunistic infections (aspergillosis, candidiasis, cryptococcosis) require predisposing factors in the host. ${ }^{3}$ These contributing factors include drug treatment (antibiotics, steroids, immunosuppressives, antineoplastics), invasive surgery and associated procedures (parenteral nutrition, indwelling catheters), and various diseases (cancer, AIDS, diabetes). As these have become more prevalent in recent years, so has the incidence of opportunistic mycoses. ${ }^{4}$
In contrast to antibacterial chemotherapy, there are few agents effective against the more serious types of fungal diseases. ${ }^{5}$ Although it has severe side effects, amphotericin B is the agent of choice, and sometimes the only effective one, for both deep and opportunistic infections. The imidazoles, miconazole and ketoconazole, are used for both superficial and systemic mycoses, but they also have their limitations as to efficacy and toxicity. There is thus a need for new drugs effective against a variety of fungi, but having low toxicity. The search for such agents has been difficult due to both host and pathogen being eucaryotic organisms with similar metabolism and the lack of detailed biochemical information about the infecting organism.

[^0]This paper describes the preparation and biological evaluation of a series of pyrido-1,2,4-triazines and related compounds. Previous efforts in this area have been reported from our laboratory, ${ }^{6}$ as well as others. ${ }^{7-9}$ In these cases, detailed antifungal data were generally lacking. We have expanded upon the earlier chemical work and also present more extensive in vitro testing results. This has enabled us to draw conclusions about the structure-activity relationships in this class of compounds.

Results and Discussion

Chemical Results. In general, the preparation of 3substituted pyrido $[3,4-e]-1,2,4$-triazines (10) followed previously reported methods ${ }^{6,7}$ (Figure 1). These compounds are listed in Table I. Intermediates $7 \mathrm{f}, 7 \mathrm{~g}, 7 \mathrm{j}, 7 \mathrm{l}$, and 70 could be isolated in pure form by filtration of the reaction mixture, washing with THF and $\mathrm{Et}_{2} \mathrm{O}$, and drying the insoluble product. In all other cases, final products in acceptable yield and purity were obtained without purification of intermediates. Crude 10 was filtered through Magnesol and then recrystallized from an appropriate solvent to obtain analytically pure material.
4 -Hydroxypyridine (1) was nitrated in a refluxing mixture of red fuming HNO_{3} ($d=1.6$, Baker) and fuming $\mathrm{H}_{2} \mathrm{SO}_{4}\left(18-24 \% \mathrm{SO}_{3}\right.$) to give $2 .{ }^{10}$ This was then chlorinated to give $3 .{ }^{11}$ The substituted hydrazide 7 could be
(6) (a) Lewis, A.; Shepherd, R. G. J. Heterocycl. Chem. 1971, 8, 47. (b) Lewis, A.; Shepherd, R. G. Ibid., 41.
(7) Pyrido[3,4-e]-1,2,4-triazines: (a) Reference 6a. (b) Wright, G. C.; Bayless, A. V.; Gray, J. E. U.S. Patents $3,882,111$ and 3,883,526, 1975. (c) Benko, P.; Messmer, A.; Gelleri, A.; Pallos, L. Acta Chim. Acad. Sci. Hung. 1976, 90, 285. (d) Plē, N.; Queguiner, G.; Pastour, P. C. R. Seances Acad. Sci., Ser. C. 1976, 283, 487. (e) Armard, J.; Chekir, K.; Plē, N.; Queguiner, G.; Simonnin, M. P. J. Org. Chem. 1981, 46, 4754.
(8) Pyrido[3,2-e]-1,2,4-triazines: (a) Reference 6b. (b) Gelleri, A.; Messmer, A.; Benko, P.; Pallos, L. Acta Chim. Acad. Sci. Hung. 1976, 90, 301.
(9) 1,2,4-Triazino[5,6-c]quinolines: (a) Wright, G. C.; Gray, J. E.; Yu, C.-N. J. Med. Chem. 1974, 17, 244. (b) Berenyi, E.; Benko, P.; Pallos, L. Acta Chim. Acad. Sci. Hung. 1976, 90, 399. (c) Albert, L.; Ispas, F.; Antal, I. Farmacia (Bucharest) 1984, 32, 43.
(10) Kruger, S.; Mann, F. G. J. Chem. Soc. 1955, 2755.
(11) Bishop, R. R.; Cavell, E. A. S.; Chapman, N. B. Ibid. 1952, 437.

1

3

Figure 1.
prepared in either of two ways. Method A involved formation of 4-hydrazino-3-nitropyridine (4) and subsequent reaction with an acid chloride (5). Method B utilized direct reaction of 3 with an acylhydrazine (6). The choice of route A or B depended upon the commercial availability of 5 and 6. The nitro group in 7 was rapidly reduced to the amine 8 over a palladium catalyst. Ring closure was then effected with ethanolic HCl to give the dihydrotriazine 9. Oxidation was done with either activated MnO_{2} or $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$. The former generally gave higher yields. In either case, it was necessary to neutralize the mixture prior to addition of oxidant because the final product (10) was unstable to strong acid. We also noticed that compounds with a methyl or methylene group adjacent to the ring gave poor yields on oxidation. The dihydro compounds 9 where R was 1-naphthylmethyl, carbethoxy, pentafluorophenyl, and cyanomethyl decomposed on oxidation with MnO_{2}.
Preparation of the parent pyridotriazine ring system (10, $\mathrm{R}=\mathrm{H}$) first required reduction of 4 to 3 -amino- 4 hydrazinopyridine. This material is unstable on standing in air but may be dried in vacuo for a few hours and then used immediately. Ring closure was done with $\mathrm{HC}(\mathrm{OEt})_{3}$ to give 9a, which was stable. However, crude $10(\mathrm{R}=\mathrm{H})$ decomposed on standing unless it was purified as soon as possible.
Three enamine derivatives were prepared by treatment of the methyl compound (10b) with tert-butoxybis(dimethylamino)methane and subsequent reaction with amines (Figure 2 and Table I). The products could not be hydrolyzed due to instability of the ring system to strong acid.
The 5 -methyl-3-substituted series (structure 19, Figure 3) was prepared from 4 -nitro-2-picoline N-oxide (15). This commercially available compound was modified so that it was in a form which could be used in the previous synthesis. Catalytic hydrogenation of $15\left(\mathrm{PtO}_{2}, \mathrm{HOAc}\right)$ followed by diazotization and hydrolysis ${ }^{12}\left(\mathrm{NaNO}_{2}\right.$, aqueous

11
10b

12 a

126

Figure 2.

Figure 3.
HNO_{3}) yielded the nitrate salt of 4-hydroxy-2-methylpyridine (17). The subsequent steps were the same as shown in Figure 1 (see Experimental Section for details). Intermediates in this sequence were usually used without purification. The analogues prepared are described in Table II.
2,6-Dimethyl-4-pyrone (20) was reacted with $\mathrm{NH}_{4} \mathrm{OH}$ in a sealed tube to produce the corresponding pyridone (21). ${ }^{13}$ This then served as the starting material for a series of 5,7-dimethyl-3-substituted-pyridotriazines (structure 25, Figure 4). The next step can produce either mono- or dinitration (22 or 23) depending on reaction conditions. Compound 23 ultimately led to a final product containing an amino function in the 8 -position. The remaining steps were the same as shown in Figure 1 (see Experimental Section). The amino group was also acylated to see if changing its basicity had an effect on biological activity. The derivatives prepared are shown in Table II.
Three examples of the previously unreported 3,4 -dihydropyrido $[3,4-e]-1,2,4$-triazine ring system were synthesized as shown in Figure 5. Compound 4 was hydrogenated and the resulting amino hydrazine was immediately condensed with a ketone in the presence of HCl to give 29. This was then dehydrogenated with activated MnO_{2}, yielding 30 . The intermediates in this sequence were not purified. When $R_{1}=$ methyl and $R_{2}=$ phenyl, 4 -pyridyl, or cyclopropyl, the oxidation step resulted in

[^1]

Figure 4.

Figure 5.

Figure 6.
extensive decomposition. The derivatives prepared are shown in Table III.

The synthesis of several 3 -substituted-pyrido[3,2-e]-1,2,4-triazines (33) followed known methods ${ }^{8}$ (Figure 6). The intermediates were similar to those shown for the isomeric $[3,4-e]$ series and were carried through without extensive purification. The final products are shown in Table IV. The dihydro derivative decomposed on oxidation when R was 4-pyridyl. A recent report described

Figure 7.

40

42
Figure 8.
the antifungal activity of 1,2 -dihydro-3-methylpyrido[$3,2-e]-1,2,4$-triazine dihydrochloride. ${ }^{14}$ We repeated the experimental procedure given in this publication and obtained the corresponding monohydrochloride monohydrate (33b') as shown by elemental analysis.

Two examples of 3 -substituted-benzo-1,2,4-triazines (37) were prepared to see if the fused pyridine ring was necessary for biological activity (Table V). The synthetic sequence started from 2-nitrofluorobenzene (Figure 7). It was similar to that used in the pyridotriazine series, but overall yields were lower.

The preparation of some 1,2,4-triazino[5,6-c]quinolines followed previously described procedures ${ }^{9 a, 15}$ with the modifications given in the Experimental Section (Figure 8 and Table VI). Briefly, self-condensation of nitromethane gave adduct 38 , which was added directly to a solution of anthranilic acid in aqueous HCl . Overnight reaction yielded 2-(β-nitroethylidene) aminobenzoic acid (40). Ring closure to 4 -hydroxy-3-nitroquinoline (41) was effected with $\mathrm{Ac}_{2} \mathrm{O}$ (reflux for 1 h) followed by $\mathrm{NaOAc}(100$ ${ }^{\circ} \mathrm{C}$, then $25^{\circ} \mathrm{C}$ overnight). Chlorination ($\mathrm{PCl}_{5}, \mathrm{POCl}_{3}$, reflux) then gave 42. This intermediate was converted into compounds of type 43 as described above for 4 -chloro-3nitropyridine (3).

Two analogues based on the previously unreported 3,4-dihydro-1,2,4-triazino[5,6-c]quinoline ring system were prepared as shown in Figure 9 and Table VII. 4-Chloro-3-nitroquinoline (42) was reacted with hydrazine and then reduced to give the unstable 44. This material

[^2]

Figure 9.
was immediately dissolved in EtOH and treated successively with ketone 28 and ethanolic HCl . The resulting tetrahydro derivative 45 was oxidized with activated MnO_{2} to 46. The intermediates in this sequence were not purified. When $R_{1}=$ methyl and $R_{2}=3$-thienyl, or $R_{1}=$ ethyl and $R_{2}=$ benzyl, extensive decomposition occurred in the oxidation step.

Biological Results (Table IX). 1. Pyrido[3,4-e]-$1,2,4$-triazines (10). Derivatives in which $R=$ hydrogen (10a), methyl (10b), 4-fluorophenyl (100), or 3- and 4pyridyl (10aa, 10bb) had the best overall antifungal activity. Extending the hydrocarbon side chain beyond methyl or replacement with cycloalkyl or trifluoromethyl tended to decrease potency. Good biological activity was retained when the 3 -substituent was phenoxymethyl $(10 \mathrm{~g})$, phenyl (101), 3-fluorophenyl (10n), or 3,4-difluorophenyl ($\mathbf{1 0 q}$). Other phenyl substituents, including 2 -fluoro (10 m), 2,4-difluoro ($\mathbf{1 0 p}$), and electron-withdrawing groups $\left(\mathrm{CF}_{3}\right.$, CN) were less potent. The 2-pyridyl isomer (10 z) and pyrazine substituent (10cc) had decreased activity, but a quinoxaline group (10dd) was still effective against some Candida species. The 3 -[2-(dialkylamino)vinyl]-substituted pyrido[3,4-e]-1,2,4-triazines (12) were substantially less active.
2. 5-Methyl- and 5,7-Dimethylpyrido[3,4-e]-1,2,4triazines (19, 25, 26). Methylation of the fused pyridyl ring in the 5 -position decreased overall antifungal activity. The parent 5,7-dimethylpyridotriazine (25a) was comparable to the best derivatives in the unsubstituted series (10). However, addition of substituents at C-3 such as methyl, 4-fluorophenyl, and 4-pyridyl, which retained high activity in the latter case, had the opposite effect in 25. Addition of an amino or acylamino group at C-8 in $\mathbf{2 5}$ produced nearly inactive compounds.
3. 3,4-Dihydropyrido[3,4-e]-1,2,4-triazines (30), Pyrido[3,2-e]-1,2,4-triazines (33), and Benzo-1,2,4triazines (37). All of these variations had decreased antifungal activity. The weak activity of the benzotriazines indicates the importance of a fused pyridine ring.
4. 1,2,4-Triazino[5,6-c] quinolines (43) and $3,4-\mathrm{Di}$ -hydro-1,2,4-triazino[5,6-c]quinolines (46). The unsubstituted triazinoquinoline (43a) was comparable to the analogous pyridotriazine (10a). Addition of a fused benzene ring had no effect in this case. However, the 3-methyl (43b) and 3-(4-pyridyl) (43c) derivatives were less potent. The corresponding dihydro series was also weakly active.
5. Several of the analogues that we prepared had overall in vitro antifungal activity equal to or greater than miconazole and nystatin. They are 10a, 10b, 100, 10aa, 10bb, 25a, and 43a. None of the synthetic compounds approached the potency of amphotericin B.

Experimental Section

Biological Methods. The in vitro antifungal effects of these compounds were determined by an agar dilution method. Twofold serial dilutions of the drugs were prepared in yeast nitrogen base
medium (Difco) supplemented with 1% dextrose, 0.15% asparagine, and 1.5% agar. Amphotericin B, miconazole, and nystatin were used as controls. The agar surfaces in petri plates were inoculated with the organisms by means of the Steers multiple inocula replicator. Incubation was at $35^{\circ} \mathrm{C}$ for $24-48 \mathrm{~h}$. The lowest concentration that inhibited the visible growth of a culture was recorded as the minimum inhibitory concentration (MIC).

Chemical Methods. Unless otherwise noted, materials were obtained from commercial sources and were used without further purification. Activated MnO_{2} was supplied by Aldrich. Column chromatography was done on silica gel 60 (E. Merck, 230-400 mesh). Thin-layer chromatography was done on commercial silica gel plates (Analtech) containing CaSO_{4} binder and fluorescent indicator. The solvents were generally $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ mixtures. Organic extracts were dried over anhydrous MgSO_{4}. Melting points were determined in open Pyrex capillary tubes on a Meitemp melting point apparatus and are uncorrected. Elemental analyses were obtained for all new compounds reported and are within $\pm 0.4 \%$ of theoretical value unless otherwise specified. ${ }^{1} \mathrm{H}$ nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra were determined with either a Varian FT $80(80-\mathrm{MHz})$ or General Electric QE-300 $(300-\mathrm{MHz})$ spectrometer in appropriate deuterated solvents and are expressed in parts per million (δ, ppm) downfield from tetramethylsilane (internal standard). Significant ${ }^{1} \mathrm{H}$ NMR data are given as multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; br, broad), coupling constant in Hz , number of protons, and assignments. ${ }^{1} \mathrm{H}$ NMR spectra for all final products are given in Table VIII. Infrared (IR) spectra were taken with either a Perkin-Elmer Model 1310 or Nicolet Model 7199 recording spectrophotometer. Only important diagnostic peaks for the infrared are listed below. Mass spectra (MS) were obtained on a Finnigan MAT CH-7 mass spectrometer in the electron impact mode. A molecular ion was usually observed in the mass spectrum, together with a significant M-28 $\left(\mathrm{N}_{2}\right)$ peak.

4-Hydroxy-3-nitropyridine (2). ${ }^{10}$ Red fuming $\mathrm{HNO}_{3}(288$ $\mathrm{mL}, 460 \mathrm{~g} ; d=1.6$, Baker) was chilled in ice while 240 mL (460 $\mathrm{g} ; d=1.92,18-24 \% \mathrm{SO}_{3}$, Baker) of fuming $\mathrm{H}_{2} \mathrm{SO}_{4}$ was slowly added. This was followed by $98.6 \mathrm{~g}(1.03 \mathrm{~mol})$ of 4 -hydroxypyridine added over 15 min . The solution was slowly heated until an exothermic reaction and $\mathrm{N}_{2} \mathrm{O}_{4}$ evolution occurred. The heat source was removed, and after the reaction had subsided, it was refluxed for 1 h . It was then cooled to room temperature and poured slowly over ice. The resulting suspension was recooled, treated cautiously with 850 mL of concentrated $\mathrm{NH}_{4} \mathrm{OH}$, and chilled overnight. The precipitated product was collected, washed with ice water ($2 \times$), and dried. The yield was $104 \mathrm{~g}(72 \%)$ of light yellow crystals, mp $276-278^{\circ} \mathrm{C}$ (lit. $278-279^{\circ} \mathrm{C}$). It was used without purification.

4-Chloro-3-nitropyridine (3). ${ }^{11} 4$-Hydroxy-3-nitropyridine $(106 \mathrm{~g}, 0.757 \mathrm{~mol})$ was added to a stirred slurry of $173 \mathrm{~g}(0.833$ mol) of PCl_{5} and 170 mL of POCl_{3} held at $60-70^{\circ} \mathrm{C}$. The mixture solidified and the temperature was raised to $130-140^{\circ} \mathrm{C}$ as the solids gradually dissolved. The reaction was held at this temperature for 6 h , and then volatile material was removed in vacuo. The residue was poured onto ice and $\mathrm{H}_{2} \mathrm{O}$. After the ice had melted, solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was slowly added until the mixture was basic. The organic material was extracted into $\mathrm{Et}_{2} \mathrm{O}$, Darco was added, and the mixture was filtered through MgSO_{4} and evaporated. The residue was distilled (air cooled short path; $\mathrm{bp}=53-80^{\circ} \mathrm{C} / 0.2-0.4$ mmHg) into an ice-cooled receiver to give $105.7 \mathrm{~g}(87 \%)$ of light yellow crystals. The product was stored under Ar in a freezer. Material obtained prior to distillation could also be used in subsequent reactions.
4-Hydrazino-3-nitropyridine (4). A solution of 64 mL (66.2 $\mathrm{g}, 1.32 \mathrm{~mol}$) of $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in 225 mL of EtOH was added dropwise with rapid overhead stirring to a solution of 105.2 g (0.662 mol) of 3 in 850 mL of EtOH with ice cooling. Addition was complete after 1.5 h , and stirring was continued for 0.75 h at 0 ${ }^{\circ} \mathrm{C}$ and at $25^{\circ} \mathrm{C}$ for 3.5 h . After chilling overnight, the product was collected by filtration, washed with cold EtOH and $\mathrm{H}_{2} \mathrm{O}(3 \times)$, and dried. The crude material was recrystallized from methyl Cellosolve (Darco) to yield 77.9 g (77%) of brick red crystals, mp $202-203{ }^{\circ} \mathrm{C} \operatorname{dec}\left(1 i+.^{16} 200^{\circ} \mathrm{C}\right)$.
(16) Koenigs, E.; Freter, K. Chem. Ber. 1924, 57, 1187.

Table I. Pyrido[3,4-e]-1,2,4-triazines

10
12

Table I (Continued)

compd no.	R	method of preparation ${ }^{a}$	method of oxidation	yield, $\%^{6}$	$\mathrm{mp},{ }^{\circ} \mathrm{C} /$ recrystn solvent	formula ${ }^{\text {c }}$
10cc		B	$\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	25	176-177/EtOH	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{6}$
10dd		A	MnO_{2}	27	217-219/methyl Cellosolve	$\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{~N}_{6}$
12a				21	152-154/h	$\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{5}$
12b				11	150-152/EtOH (2x)	$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{5}$
12c				8	138-140/ PhCH_{3}	$\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{6}$

[^3]Table II. 5-Methyl- and 5,7-Dimethylpyrido[3,4-e]-1,2,4-triazines

19

25

26

compd no.	$\mathrm{R}, \mathrm{R}_{2}, \mathrm{R}_{3}(26)$	method of oxidation	yield, $\%{ }^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C} /$ recrystn solvent	formula ${ }^{\text {b }}$
19a	H	MnO_{2}	$15^{\text {c }}$	116-117.5/hexanes	$\mathrm{C}_{7} \mathrm{H}_{6} \mathbf{N}_{4}$
19b	CH_{3}	MnO_{2}	5	72-74/hexanes (2 X)	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}$
19c	-	MnO_{2}	46	$151.5-153.5 / \mathrm{EtOH}$	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{5}$
25a	H, H	MnO_{2}	$18{ }^{\text {d }}$	62-63/petroleum ether ($2 \times$)	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{4}$
25b	CH_{3}, H	MnO_{2}	35	97.5-98/hexanes	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4}$
25c		MnO_{2}	31	189-190/cyclohexane	$\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{FN}_{4}$
25d		MnO_{2}	23	160-162/hexanes	$\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{5}$
25 e	$\mathrm{CH}_{3}, \mathrm{NH}_{2}$	MnO_{2}	17	171-173/cyclohexane	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{5}$
255	\square	$\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$	10	$228-231 / \mathrm{CH}_{3} \mathrm{CN}$	$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{FN}_{5}$
25g		MnO2	17	221-224/EtOH-EtOAc	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{6}$
26a	NHCOCH_{3}		46	280-285/methyl Cellosolve ($2 \times$)	$\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{FN}_{5} \mathrm{O}^{\text {e }}$
26b	NHCOPh		8	242-244/methyl Cellosolve ($2 \times$)	$\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{FN}_{5} \mathrm{O}$

${ }^{a}$ Compounds 19: overall from 18. Compounds 25 and 26: overall from 24. ${ }^{b}$ See footnote c, Table I. ${ }^{\text {c }}$ Based on 2-methyl-3-nitro-4(1 H) pyridinone hydrazone. ${ }^{d}$ Based on 2,6-dimethyl-3-nitro-4(1 H) pyridinone hydrazone. ${ }^{e}$ Analyzes for 0.125 mol of $\mathrm{H}_{2} \mathrm{O}$.

Table III. 3,4-Dihydropyrido[3,4-e]-1,2,4-triazines

30

compd no.	R_{1}	R_{2}	yield, $\%^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C} /$ recrystn solvent	formula ${ }^{\text {b }}$
30a	CH_{3}		48	143-145/ $\mathrm{PhCH}_{3}{ }^{\text {c }}$	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4}$
30b			63	127-129/d	$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{4}$
30c	CH_{2}		46	$\begin{aligned} & 136-138 / \mathrm{PhCH}_{3} \\ & (2 \times) \end{aligned}$	$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}{ }^{\text {e }}$

[^4]Table IV. Pyrido[3,2-e]-1,2,4-triazines

33

| compd
 no. | R | yield,
 $\%^{a}$ | $\mathrm{mp},{ }^{\circ} \mathrm{C} /$
 recrystn solvent | formula ${ }^{b}$ |
| :---: | :--- | :--- | :---: | :--- | :--- |
| 33a | H | 26 | $145-148 / \mathrm{EtOH}$ | $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~N}_{4}$ |
| 33b | CH_{3} | 44 | $170-171 / \mathrm{EtOH}$ | $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4}$ |
| 33c | | 30 | $223-224 /$ methyl
 Cellosolve | $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{~F}$ |
| | | | | |

${ }^{a}$ Overall from 31. ${ }^{b}$ See footnote c, Table I.
Acy1 Derivatives of 4-Hydrazino-3-nitropyridine (7). Compounds of this type were prepared in two ways: method A, acylation of 4 with an acid chloride, or method B, reaction of 3 with a hydrazide. A specific example of each procedure is given.

Table V. Benzo-1,2,4-triazines

37

compd no.	R	yield, $\%^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C} /$ recrystn solvent	formula ${ }^{b}$
$\mathbf{3 7 a}$	CH_{3}	1	$89-92 / \mathrm{c}$	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{3}$
$\mathbf{3 7 b}$		12	$120-124 /$ cyclohexane	$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3}$

${ }^{a}$ Overall from 35. ${ }^{b}$ See footnote c, Table I. ${ }^{c}$ See Experimental Section.

Table VI. 1,2,4-Triazino[5,6-c]quinolines

43

| compd
 no. | R | yield,
 $\% 0^{a}$ | $\mathrm{mp},{ }^{\circ} \mathrm{C} /$
 recrystn solvent | formula ${ }^{b}$ |
| :--- | :--- | :---: | :--- | :--- | :--- |
| 43a | H | 45 | $162-163 / \mathrm{EtOH}$ | $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4}$ |
| 43b | CH_{3} | 21 | $128-130 / \mathrm{c}$ | $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{~N}_{4}$ |
| 43c | | 25 | $216-217 /$ methyl Cellosolve | $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{~N}_{5}{ }^{d}$ |

${ }^{a}$ Overall from 42. ${ }^{b}$ See footnote c, Table I. ${ }^{c}$ Filtered through Magnesol (EtOAc) and evaporated. ${ }^{d} \mathrm{C}$: calcd, 69.49; found, 69.02 .

Table VII. 3,4-Dihydro-1,2,4-triazino[5,6-c]quinolines

46

compd no.	R_{1}	R_{2}	yield, $\%^{a}$	$\mathrm{mp},{ }^{\circ} \mathrm{C} /$ recrystn solvent	formula
46 a	CH_{3}	CH_{3}	35	$166-168 / \mathrm{PhCH}_{3}(2 \times)$	$\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}$
46 b	$-\left(\mathrm{CH}_{2}\right)_{5}-$	19	$151-153 / \mathrm{EtOAc}^{-}$ then PhCH_{3}		

${ }^{a}$ Overall from 4-hydrazino-3-nitroquinoline. ${ }^{b}$ See footnote c, Table I.

Method A. A slurry of $6.00 \mathrm{~g}(0.0390 \mathrm{~mol})$ of 4 in 150 mL of THF at $0^{\circ} \mathrm{C}$ under Ar was treated dropwise with a solution of $6.70 \mathrm{~mL}(9.36 \mathrm{~g}, 0.0449 \mathrm{~mol})$ of 4 -(trifluoromethyl)benzoyl chloride in 8 mL of THF. The thick mixture was stirred at $0^{\circ} \mathrm{C}$ for 1.5 h and at $25^{\circ} \mathrm{C}$ overnight. It was then filtered, and the product was washed with THF and with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo over KOH . The yield of 7 s was 13.8 g of yellow crystals.

When $\mathrm{R}=\mathrm{CF}_{3}$, trifluoroacetic anhydride was used as the acylating agent and 7 f was obtained as the free base. Although pure samples of $7 \mathrm{f}, 71$, and 7 o could be obtained and characterized, the crude products were generally used directly in the next step.

Method B. A mixture of $6.00 \mathrm{~g}(0.0377 \mathrm{~mol})$ of 3 and 6.94 g (0.0377 mol) of 4-phenylbenzhydrazide in 60 mL of EtOH was refluxed for 5 h and then chilled overnight. The product was collected by filtration, washed with cold EtOH, and dried in vacuo. The yield of 7 u was 12.5 g of yellow crystals. The crude products made in this way were carried on to the next step without being purified or characterized. Pyrazinoic acid hydrazide (6cc) was prepared by reaction of methyl pyrazinecarboxylate with $\mathrm{H}_{2} \mathrm{~N}$ $\mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in refluxing EtOH; other hydrazides were commercially available.

2-(3-Amino-4-pyridinyl)-4-(trifluoromethyl)benzoic Acid Hydrazide Hydrochloride (8s). A mixture of 13.8 g (0.0394
mol) of 7 s in 300 mL of $95 \% \mathrm{EtOH}$ containing 1 g of $5 \% \mathrm{Pd} / \mathrm{C}$ was hydrogenated in a Parr apparatus at ca. 45 psi until there was no more H_{2} uptake. The reaction was then filtered through Celite, and the filter cake was washed well with $95 \% \mathrm{EtOH}$. The filtrate and wash were combined and evaporated to give 13.6 g of gray crystals.

This procedure is typical for all the compounds of this type. They could not be purified due to their instability and were used as is. The hydrogenation was sometimes run as a slurry in EtOH or aqueous EtOH. In the case of $7 \mathbf{r}$ and $7 \mathbf{u}$, TFA was added to dissolve the starting material; HCl was used for this purpose with $\mathbf{7 b b}$ and 7cc. Water or EtOH could be added to the reduced product in order to solubilize it prior to filtering off the catalyst.

3-[4-(Trifluoromethyl) phenyl]-1,2-dihydropyrido[3,4-e]-1,2,4-triazine $\boldsymbol{n} \mathrm{HCl}$ (9s). The crude amine, 8 s (13.6 g), was dissolved in 375 mL of EtOH , and 35 mL of ethanolic HCl was added. The thick mixture was stirred for 5 h at $25^{\circ} \mathrm{C}$ and refluxed for 1.5 h . The solvent was then removed, and the residue was dried in vacuo to give $9 \mathbf{s}$.

All other compounds of type 9 were prepared in this way. They could not be adequately purified and characterized due to their instability. However, purification at this stage was unnecessary in order to obtain analytical samples of 10.

3 -[4-(Trifluoromethyl)phenyl]pyrido[3,4-e]-1,2,4-triazine (10s). The crude dihydro compound 9 s prepared above was dissolved in 600 mL of $\mathrm{H}_{2} \mathrm{O}$, and the pH was adjusted to ca. 6 with 5 M NaOH . The thick precipitate was stirred vigorously while $13.7 \mathrm{~g}(0.158 \mathrm{~mol})$ of activated MnO_{2} was added. After 50 $\min , T L C$ indicated no starting material. The reaction was continued for an additional 0.5 h and then filtered through Celite. The filter cake was washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, and CHCl_{3} until all colored material was eluted. The filtrate and washes were combined and evaporated, and the residue was recrystallized from methyl Cellosolve. The yield was 8.32 g (77% overall from 4) of orange crystals, mp $209-210^{\circ} \mathrm{C}$.

Although $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ has been used for this reaction, activated MnO_{2} is preferred because it produces fewer byproducts and higher yields. In either case, it is essential to keep the reaction from becoming acidic because this leads to product decomposition. Concentrated $\mathrm{NH}_{4} \mathrm{OH}$ was used with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ and dilute NaOH with MnO_{2} for this purpose. If significant lower R_{f} impurities were seen by TLC, then the crude product was filtered through Magnesol (CHCl_{3} or $3-5 \% \mathrm{MeOH}$ in CHCl_{3}) prior to recrystallization. When $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OPh}$, oxidation with ferricyanide failed and MnO_{2} was used. When $\mathrm{R}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$, 10e contained Mn which could not be easily removed; ferricyanide was used as oxidant in this case. A procedure for the use of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ is given below.

The crude dihydro compound 9 was dissolved in $\mathrm{H}_{2} \mathrm{O}$ and the pH adjusted to 8 with concentrated $\mathrm{NH}_{4} \mathrm{OH}$. An aqueous solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ (1 equiv) was added all at once. The mixture was stirred for 3 min and then extracted with CHCl_{3}. The extracts were combined, dried, and evaporated. The residue was purified by filtration through Magnesol followed by recrystallization. Compound 10 e was purified by flash chromatography (silica gel, 30% EtOAc in hexanes)

Pyrido[3,4-e]-1,2,4-triazine (10a). ${ }^{6 \mathrm{a}}$ A mixture of $6.16 \mathrm{~g}(0.04$ mol) of 4 in 200 mL of 95% EtOH containing 0.750 g of $5 \% \mathrm{Pd} / \mathrm{C}$ was hydrogenated on a Parr apparatus. After H_{2} uptake had ceased, the reaction was filtered through Celite and the filter cake was washed well with additional solvent. The combined filtrate and wash were evaporated, and the residue was dried in vacuo for several hours. The crude product (tan solid) weighed 4.9 g and was used immediately in the next step.

A slurry of $4.9 \mathrm{~g}(0.0395 \mathrm{~mol})$ of the aminohydrazine in 105 mL of $\mathrm{HC}(\mathrm{OEt})_{3}$ containing 6.5 mL of concentrated HCl was stirred for 2.5 h . The insoluble material was collected by filtration, washed with $\mathrm{HC}(\mathrm{OEt})_{3}$, and dried. The yield of 9 a was 7.1 g (orange crystals). It was used directly in the next step.

Concentrated $\mathrm{NH}_{4} \mathrm{OH}(70 \mathrm{~mL}, 1.02 \mathrm{~mol})$ was added to 7.1 g (0.0343 mol) of 9 a in 140 mL of $\mathrm{H}_{2} \mathrm{O}$. This solution was then treated with $22.6 \mathrm{~g}(0.0686 \mathrm{~mol})$ of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ in 345 mL of $\mathrm{H}_{2} \mathrm{O}$ for 2 min . The reaction was extracted several times with CHCl_{3}. These extracts were combined, treated with Darco, filtered through MgSO_{4}, and evaporated. In one experiment, this crude material decomposed on standing overnight, so it should be purified immediately. The residue from the CHCl_{3} extracts was boiled with
hexanes and deposited some brown tarry material. Darco was added, and the mixture was filtered through Celite. Crystals formed on standing overnight in a freezer. They were collected, washed with hexanes, and dried to yield 1.9 g (36% from 4) of 10 a (orange crystals), $\mathrm{mp} 88-90^{\circ} \mathrm{C}$ (lit. $90-91.5^{\circ} \mathrm{C}$).
$\boldsymbol{N}, \boldsymbol{N}$-Dimethyl-2-(pyrido[3,4-e]-1,2,4-triazin-3-yl)ethenamine (12a). A mixture of $0.731 \mathrm{~g}(0.005 \mathrm{~mol})$ of 10 b in $40 \mathrm{~mL}(3.38 \mathrm{~g}, 0.0194 \mathrm{~mol})$ of tert-butoxybis(dimethylamino)methane (11) was heated in an oil bath $\left(90-100^{\circ} \mathrm{C}\right)$ for 2 h . Volatile material was then removed in vacuo, and the residue was filtered through Magnesol (EtOAc) until no more colored material was eluted. Solvent removal yielded $0.410 \mathrm{~g}(41 \%)$ of purple crystals: $\operatorname{mp} 152-154^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) \nu 1628 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

3-[2-(1-Piperidinyl)ethenyl]pyrido[3,4-e]-1,2,4-triazine (12b). A solution of $1.00 \mathrm{~g}(0.00497 \mathrm{~mol})$ of 12 a in $20 \mathrm{~mL}(17.2$ $\mathrm{g}, 0.202 \mathrm{~mol}$) of piperidine was refluxed for 20 h . Most of the piperidine was evaporated, and the residue was azeotroped with EtOH. The solid that remained was recrystallized twice from EtOH to yield $0.640 \mathrm{~g}(53 \%)$ of dark purple crystals: mp 150-152 ${ }^{\circ} \mathrm{C}$; IR (KBr) $\nu 1625 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

3-[2-(4-Methyl-1-piperazinyl)ethenyl]pyrido[3,4-e]-1,2,4triazine (12c). A solution of $0.500 \mathrm{~g}(0.00248 \mathrm{~mol})$ of 12 a in 5 mL ($4.51 \mathrm{~g}, 0.0452 \mathrm{~mol}$) of N-methylpiperazine was refluxed for 17 h . Volatile material was removed in vacuo, and the residue was dissolved in hot PhCH_{3}. This solution was diluted with 2 volumes of hexanes and chilled. The resulting precipitate was collected, redissolved in $5 \% \mathrm{MeOH}$ in EtOAc, and eluted through Magnesol. Solvent evaporation and recrystallization from PhCH_{3} gave $0.240 \mathrm{~g}(38 \%)$ of dark purple crystals: $\mathrm{mp} 138-140^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) \nu 1630 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{C})$.

4-Amino-2-picoline (16). 4-Nitro-2-picoline N -oxide (140.7 $\mathrm{g}, 0.914 \mathrm{~mol}$) was hydrogenated in five batches on a Parr apparatus at ca. 40 psi ; there was 28.1 g of nitro compound, 1.0 g of PtO_{2}, and 150 mL of glacial HOAc in each batch. The hydrogenation was rapid and exothermic. The combined reaction mixtures were filtered through Celite, the filter cake was washed with HOAc, and the solvent was evaporated. The residue was cooled in an ice bath and basified ($\mathrm{pH} \sim 11$) with 10 M NaOH . The mixture was extracted repeatedly with $\mathrm{Et}_{2} \mathrm{O}$, and the extracts were combined, dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), and evaporated to give 12.8 g of product. The basified aqueous solution was then continuously extracted with CHCl_{3} for 3 days. The CHCl_{3} solution was dried and evaporated to give an additional 79.7 g of product. The total yield was 92.5 g (94% crude) of 16 as a reddish orange solid. The melting point range of this material was $77-89^{\circ} \mathrm{C}$, and a sample recrystallized from cyclohexane had mp 93-95 ${ }^{\circ} \mathrm{C}$ (lit..$^{17} 95^{\circ} \mathrm{C}$). The crude material was used in the next reaction.

2-Methyl-4-pyridinol Nitrate (17). ${ }^{12}$ A solution of 50.4 g (0.0466 mol) of 16 in 278 mL of concentrated $\mathrm{HNO}_{3}+374 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ was cooled in an ice bath. It was treated with 46.6 g (0.676 mol) of NaNO_{2} in 137 mL of $\mathrm{H}_{2} \mathrm{O}$ added dropwise with vigorous stirring (temperature $\leq 20^{\circ} \mathrm{C}$). After addition was complete (ca. 30 min), the reaction was stored at $-2^{\circ} \mathrm{C}$ overnight. The solid product was then collected, washed twice with ice water, and dried in vacuo ($64^{\circ} \mathrm{C}$). The yield was $31.7 \mathrm{~g}(40 \%)$ of beige crystals, $\mathrm{mp} 164-165^{\circ} \mathrm{C}$ (lit. $157-161^{\circ} \mathrm{C}$). Anal. Calcd: C, 41.86 ; H, 4.68; N, 16.28. Found: C, 41.48; H, 4.61; N, 16.27.

2-Methyl-3-nitro-4-pyridinol. Compound 17 ($51.6 \mathrm{~g}, 0.300$ mol) was added in portions to a solution of 115 mL of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 115 mL of fuming $\mathrm{HNO}_{3}(d=1.5)$. The reaction was refluxed for 2 h , cooled, and poured over cracked ice. The resulting clear solution was cautiously neutralized with 43 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and chilled. The product was collected, washed with ice water ($2 \times$ 50 mL), and dried in vacuo ($60^{\circ} \mathrm{C}$), to give $30.7 \mathrm{~g}(66 \%$ crude $)$ of pale yellow solid: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 6.35 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 7.73 (d, $J=4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6$).

4-Chloro-2-methyl-3-nitropyridine (18). A solution of 30.5 $\mathrm{g}(0.200 \mathrm{~mol})$ of 2-methyl-3-nitro-4-pyridinol in 100 mL of POCl_{3} was refluxed for 2 h . The POCl_{3} was removed in vacuo, and the residue was poured over ice. Solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and then NaHCO_{3} were added to $\mathrm{pH} \sim 6$. The mixture was extracted with CHCl_{3}, and the extract was washed with ice water ($2 \times$) and dried. Solvent 1961, 26, 2740.
evaporation gave 26.7 g of light brown solid, which was stored at $0^{\circ} \mathrm{C}$ and used without further purification.

5-Methylpyrido[3,4-e]-1,2,4-triazine (19a) was prepared in four steps from 18 and $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ without purification of intermediates as described for 10 a . The final oxidation was with MnO_{2}. Since this pyridotriazine was partially soluble in water, the oxidation mixture was filtered and the cake was washed well with CHCl_{3}. The aqueous filtrate was continuously extracted with CHCl_{3} to obtain more crude product. Both batches of crude material were combined and recrystallized from hexanes to give a 15% overall yield of yellow crystals, mp $116-117.5^{\circ} \mathrm{C}$.

3,5-Dimethylpyrido [3,4-e]-1,2,4-triazine (19b) was prepared in four steps from 18 and acethydrazide without purification of intermediates as described for $\mathbf{1 0 b}$. The final oxidation was with MnO_{2}, and crude product was isolated both by filtration of the reaction and by CHCl_{3} extraction of the aqueous filtrate. This material was then eluted through Magnesol (EtOAc) and recrystallized from hexanes ($2 x$) to give a 5% overall yield of brown crystals, mp $72-74^{\circ} \mathrm{C}$.

5-Methyl-3-(4-pyridinyl) pyrido[3,4-e]-1,2,4-triazine (19c) was prepared in four steps from 18 and isonicotinic acid hydrazide without purification of intermediates as described for $\mathbf{1 0 b b}$. Oxidation was with MnO_{2}, and purification was similar to 19b. The overall yield was 46% of brown crystals after recrystallization from $\mathrm{EtOH}, \mathrm{mp} 151.5-153.5^{\circ} \mathrm{C}$.

2,6-Dimethyl-4-pyridone (21). The procedure of Bellingham et al. ${ }^{13}$ was utilized, the yield of gray solid was 90%, and it melted at $231-233^{\circ} \mathrm{C}$ (lit. $222-224^{\circ} \mathrm{C}$).
2,6-Dimethyl-3-nitro-4-pyridinol (22). Compound 21 (68.5 $\mathrm{g}, 0.557 \mathrm{~mol}$) was added in portions to concentrated $\mathrm{HNO}_{3}(257$ $\mathrm{mL}, d=1.42$). Concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(368 \mathrm{~mL})$ was then added slowly while keeping the temperature below $20^{\circ} \mathrm{C}$. Stirring was continued at room temperature for 3 h . The reaction was then slowly poured onto cracked ice and neutralized with $\mathrm{K}_{2} \mathrm{CO}_{3}$ and finally with concentrated $\mathrm{NH}_{4} \mathrm{OH}$ to pH 8 . The chilled mixture was filtered, and the product was washed well with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo at $72{ }^{\circ} \mathrm{C}$. The yield of off-white solid was 87 g : ${ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$) $\delta 2.18$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}$), 2.22 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-2 \mathrm{CH}_{3}$), 6.03 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-5$).

2,6-Dimethyl-3,5-dinitro-4-pyridinol (23). Compound 21 $(67.4 \mathrm{~g}, 0.547 \mathrm{~mol})$ was added in portions to a chilled mixture of fuming $\mathrm{HNO}_{3}\left(203 \mathrm{~mL}, d=1.5\right.$) and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (305 mL). The solution was refluxed for 2 h and then poured onto cracked ice. Concentrated $\mathrm{NH}_{4} \mathrm{OH}$ was cautiously added to pH 6 , the chilled mixture was filtered, and the solid product was washed with $\mathrm{H}_{2} \mathrm{O}$ and dried in vacuo $\left(60^{\circ} \mathrm{C}\right)$. The yield of yellow solid was 99 g . The NMR spectrum of the crude material showed a single peak at $\delta 2.38$ (DMSO- d_{6}).

4-Chloro-2,6-dimethyl-3-nitropyridine (24) ($\mathrm{R}_{1}=\mathbf{H}$) was prepared according to ref 18 . The yield of white solid was 20% and had $\mathrm{mp} 68-70^{\circ} \mathrm{C}$ (lit. $70-71^{\circ} \mathrm{C}$). This material was used without further purification.

4-Chloro-2,6-dimethyl-3,5-dinitropyridine (24) ($\mathbf{R}_{1}=\mathbf{N O}_{2}$) was prepared in the same way as $24\left(\mathrm{R}_{1}=H\right)$. The yield of pale yellow solid was 41% and had mp 135-139 ${ }^{\circ} \mathrm{C}$ (lit. ${ }^{19}{ }^{143} .5-144$ ${ }^{\circ} \mathrm{C}$). This compound was used without further purification.

3-Substituted-5,7-dimethylpyrido[3,4-e]-1,2,4-triazines (25) ($\mathbf{R}_{2}=\mathbf{H}$). This series of four compounds was prepared in four steps from $24\left(\mathrm{R}_{1}=\mathrm{H}\right)$ and $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{HC}\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)_{3}$ or an acylhydrazine (6) without purification of intermediates. The procedures were essentially the same as described for compounds 10. See Table II.

3-Substituted-8-amino-5,7-dimethylpyrido[3,4-e]-1,2,4triazines (25) ($\mathbf{R}_{2}=\mathbf{N H}_{2}$). This series of three compounds was prepared in four steps from $24\left(\mathrm{R}_{1}=\mathrm{NO}_{2}\right)$ and an acylhydrazine (6) without purification of intermediates. The procedure was similar to that described for compounds 10. See Table II.
\boldsymbol{N}-[3-(4-Fluorophenyl)-5,7-dimethylpyrido[3,4-e]-1,2,4-triazin-8-yl]acetamide (26a). A solution of $2.00 \mathrm{~g}(0.00743 \mathrm{~mol})$ of $\mathbf{2 5 f}$ in 50 mL of $\mathrm{Ac}_{2} \mathrm{O}$ was heated on a steam bath for 30 min .

[^5]Table VIII. ${ }^{1} \mathrm{H}$ Nuclear Magnetic Resonance Spectra of Final Products ${ }^{\text {a }}{ }^{\text {b }}$

compd no.	solvent	proton resonances
10a	CDCl_{3}	10.18 (s, 1 H, H-3)
10b	CDCl_{3}	3.23 (s, 3 H, CH3)
10c	CDCl_{3}	$1.11\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49\left(\mathrm{t}, J=7,2 \mathrm{H}, \mathrm{CH}_{2}\right)$
10d	CDCl_{3}	$0.876\left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25\left[\mathrm{~s}, 24 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{12}\right], 2.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49\left(\mathrm{t}, J=7,2 \mathrm{H}, \mathrm{CH}_{2}\right)$
10 e	CDCl_{3}	$1.66\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right]$
10 g	DMSO- d_{6}	5.90 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 7.15 (m, 5 H , phenyl)
10h	CDCl_{3}	1.40 (m, $\left.4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.83$ (m, $\left.1 \mathrm{H}, \mathrm{CH}\right)$
10 i	CDCl_{3}	2.18 (m, 2 H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.63 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 4.41 (quintet, $J=8,1 \mathrm{H}, \mathrm{CH}$)
10 j	DMSO- d_{6}	1.83 [m, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 2.18\left[\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}\right], 3.93$ (quintet, $1 \mathrm{H}, \mathrm{CH}$)
10k	DMSO- d_{6}	$1.75\left[\mathrm{~m}, 10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}\right], 3.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$
101	CDCl_{3}	7.65 (m, 3 H, phenyl), 8.84 (m, 2 H , phenyl)
10 m	CDCl_{3}	7.45 (m, 3 H, phenyl), 8.50 (m, 1 H , phenyl)
10 n	CDCl_{3}	7.50 (m, 2 H, phenyl), 8.55 (m, 2 H, phenyl)
100	CDCl_{3}	7.35 (dd, $J_{\mathrm{HH}}=8.8, J_{\mathrm{HF}}=8.4,2 \mathrm{H}$, phenyl), $8.81\left(\mathrm{dd}, J_{\mathrm{HH}}=8.8, J_{\mathrm{HF}}=5.6,2 \mathrm{H}\right.$, phenyl)
10p	DMSO- d_{6}	7.55 (m, 2 H , phenyl), 8.41 (m, 2 H , phenyl)
10q	CDCl_{3}	7.42 (m, 1 H, phenyl), 8.60 (m, 2 H , phenyl)
10r	CDCl_{3}	1.40 [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 7.60$ (d, $J=9,2 \mathrm{H}$, phenyl), 8.68 (d, $J=9,2 \mathrm{H}$, phenyl)
10 s	DMSO- d_{6}	8.08 (m, 2 H, phenyl), 8.95 (m, 2 H , phenyl)
$10 t^{c}$	CDCl_{3}	7.94 (d, $J=9,2 \mathrm{H}$, phenyl), 8.94 (d, $J=9,2 \mathrm{H}$, phenyl)
10u	CDCl_{3}	7.56 (m, 5 H, phenyl), 7.83 (d, $J=8,2 \mathrm{H}$, phenyl), 8.84 (d, $J=8,2 \mathrm{H}$, phenyl)
10 v	DMSO- d_{6}	3.10 [s, $6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$], 6.94 (d, $J=8,2 \mathrm{H}$, phenyl), 8.53 (d, $J=8,2 \mathrm{H}$, phenyl)
10w	CDCl_{3}	1.49 (t, J = 7, 3 H, CH_{3}), 4.16 (q, $J=7,2 \mathrm{H}, \mathrm{CH}_{2}$), 7.07 (d, $J=9,2 \mathrm{H}$, phenyl), 8.70 (d, $J=9,2 \mathrm{H}$, phenyl)
10x	CDCl_{3}	4.06 (s, 3 H, OCH_{3}), 4.13 (s, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 8.15(\mathrm{~s}, 2 \mathrm{H}$, phenyl)
10y	CDCl_{3}	7.58 ($\mathrm{m}, 2 \mathrm{H}$, naphthalene), 7.96 ($\mathrm{m}, 3 \mathrm{H}$, naphthalene), 8.75 (dd, $J=8, J=1,1 \mathrm{H}$, naphthalene), 9.36 ($\mathrm{s}, 1 \mathrm{H}$, naphthalene)
10z	CDCl_{3}	7.58 (m, 1 H , pyridyl), 8.05 (m, 1 H , pyridyl), 9.00 (m, $3 \mathrm{H}, \mathrm{H}-7$ and pyridyl)
10aa	CDCl_{3}	7.60 (dd, $J=8, J=5,1 \mathrm{H}$, pyridyl), 9.00 (m,3 H, H-7, pyridyl), 9.78 (s, 1 H , pyridyl)
10bb	CDCl_{3}	8.61 (dd, $J=5, J=1,2 \mathrm{H}$, pyridyl), 8.93 (dd, $J=5, J=1,2 \mathrm{H}$, pyridyl)
10cc	CDCl_{3}	8.94 (m, 2 H, pyrazine), 10.11 (d, $J=2,1 \mathrm{H}$, pyrazine)
10 dd	CDCl_{3}	7.93 (m, 2 H, quinoxaline), 8.35 ($\mathrm{m}, 2 \mathrm{H}$, quinoxaline), 10.28 ($\mathrm{s}, 1 \mathrm{H}$, quinoxaline)
12a	CDCl_{3}	$3.10\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right.$], $5.62(\mathrm{~d}, J=13,1 \mathrm{H},=\mathrm{CH}), 8.03(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}-8), 8.26(\mathrm{~d}, J=13,1 \mathrm{H},=\mathrm{CH}), 8.55$ (d, $J=6,1 \mathrm{H}, \mathrm{H}-7$), 9.20 (s, $1 \mathrm{H}, \mathrm{H}-5$)
12b	CDCl_{3}	1.73 [s (br), $6 \mathrm{H}, \mathrm{CH}_{2}$'s], 3.43 [s (br), $4 \mathrm{H}, \mathrm{CH}_{2}{ }^{\prime} \mathrm{s}$], $5.75(\mathrm{~d}, J=14,1 \mathrm{H},=\mathrm{CH}$), $8.05(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}-8), 8.24$ (d, $J=14,1 \mathrm{H},=\mathrm{CH}$), 8.59 (d, $J=6,1 \mathrm{H}, \mathrm{H}-7$), 9.21 (s, $1 \mathrm{H}, \mathrm{H}-5$)
12c	CDCl_{3}	$\begin{aligned} & 2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~s}\right), 3.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~s}\right), 5.79(\mathrm{~d}, J=14,1 \mathrm{H},=\mathrm{CH}), 8.08(\mathrm{~d}, J=5,1 \mathrm{H}, \mathrm{H}-8), \\ & 8.23(\mathrm{~d}, J=14,1 \mathrm{H},=\mathrm{CH}), 8.63(\mathrm{~d}, J=5,1 \mathrm{H}, \mathrm{H}-7), 9.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) \end{aligned}$
19a	CDCl_{3}	3.15 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$) , 8.23 (d, $\left.J=6,1 \mathrm{H}, \mathrm{H}-8\right), 8.89(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}-7), 10.15$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-3\right)$
19b	CDCl_{3}	3.08 (s, $3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$), 3.25 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-3 \mathrm{CH}_{3}$), 8.15 (d, $\left.J=5,1 \mathrm{H}, \mathrm{H}-8\right), 8.78$ (d, $J=5,1 \mathrm{H}, \mathrm{H}-7$)
19c	CDCl_{3}	3.25 (s, 3 H, CH_{3}), 8.25 (d, $\left.J=5,1 \mathrm{H}, \mathrm{H}-8\right), 8.63$ (m, 2 H, pyridyl), 9.00 (m, $3 \mathrm{H}, \mathrm{p}$ pridyl and $\mathrm{H}-7$)
25a	CDCl_{3}	2.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}$), 3.10 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$), 8.03 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8\right), 10.07$ (s, 1 H, H-3)
25b	CDCl_{3}	2.75 (s, $3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}$), $3.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}\right.$), $3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-3 \mathrm{CH}_{3}\right.$), 7.91 (s, $\left.1 \mathrm{H}, \mathrm{H}-8\right)$
25c	CDCl_{3}	2.80 (s, 3 H, C-7 CH3), 3.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$), 7.26 (m, 2 H , phenyl), 7.96 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8\right), 8.75$ (m, 2 H , phenyl)
25d	CDCl_{3}	$\begin{aligned} & 2.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}\right), 3.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}\right), 8.05(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8), 8.59(\mathrm{dd}, J=6, J=1,2 \mathrm{H}, \text { pyridyl), } 8.91 \text { (dd, } \\ & J=6, J=1,2 \mathrm{H}, \text { pyridyl) } \end{aligned}$
25 e	CDCl_{3}	2.60 (s, $3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}$), 2.85 (s, $3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$), 3.15 (s, $3 \mathrm{H}, \mathrm{C}-3 \mathrm{CH}_{3}$), 5.00 [s (br), $2 \mathrm{H}, \mathrm{NH}_{2}$]
25 f	CDCl_{3}	2.64 (s, 3 H, C-7 CH3), 2.95 (s, $3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$) , 5.08 [$\mathrm{s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{NH}_{2}$], 7.28 (m, 2 H , phenyl), 8.76 (m, 2 H , phenyl)
25g	CDCl_{3}	2.68 (s, $3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}$), 3.00 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}$), 5.15 [$\mathrm{s}(\mathrm{br}), 2 \mathrm{H}, \mathrm{NH}_{2}$], 8.59 (dd, $J=6, J=1,2 \mathrm{H}$, pyridyl), 8.91 (dd, $J=6, J=1,2 \mathrm{H}$, pyridyl)
26a	CDCl_{3}	$2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}\right.$), $3.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}\right.$), $7.30(\mathrm{~m}, 2 \mathrm{H}$, phenyl), 8.75 ($\mathrm{m}, 2 \mathrm{H}$, phenyl), 10.28 [s (br), $1 \mathrm{H}, \mathrm{NH}$]
26b	DMSO- d_{6}	$2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-7 \mathrm{CH}_{3}\right), 3.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-5 \mathrm{CH}_{3}\right), 7.60(\mathrm{~m}, 5 \mathrm{H}$, phenyl and 4-fluorophenyl), 8.16 ($\mathrm{m}, 2 \mathrm{H}$, phenyl), 8.71 ($\mathrm{m}, 2 \mathrm{H}, 4$-fluorophenyl), 10.8 [s (br), $1 \mathrm{H}, \mathrm{NH}$]
30a	CDCl_{3}	1.55 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$'s), 4.08 [s (br), $1 \mathrm{H}, \mathrm{NH}$], 7.64 (d, $\left.J=6,1 \mathrm{H}, \mathrm{H}-8\right), 8.16$ (d, $J=6,1 \mathrm{H}, \mathrm{H}-7$), 8.19 (s, $1 \mathrm{H}, \mathrm{H}-5$)
30b	CDCl_{3}	$\begin{aligned} & 1.85(\mathrm{~m}, 10 \mathrm{H}, \text { cyclohexyl), } 4.09[\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}], 7.63(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}-8), 8.14(\mathrm{~d}, J=6,1 \mathrm{H}, \mathrm{H}-7), 8.20(\mathrm{~s}, 1 \mathrm{H}, \\ & \mathrm{H}-5) \end{aligned}$
30c	CDCl_{3}	$\begin{aligned} 0.995 & \left(\mathrm{t}, J=7,3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.91\left(\mathrm{~d}, J=13,1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 3.00(\mathrm{~d}, \\ J & =13,1 \mathrm{H}, \mathrm{CH} \mathrm{Ph}), 3.80[\mathrm{~s}(\mathrm{br}), 1 \mathrm{H}, \mathrm{NH}], 7.09(\mathrm{dd}, J=8, J=2,2 \mathrm{H}, \text { phenyl), } 7.27(\mathrm{~m}, 3 \mathrm{H}, \text { phenyl}), 7.61(\mathrm{~d}, \\ J & =5, \mathrm{H}-8), 8.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5 \text { and H-7) } \end{aligned}$
33a	DMSO- d_{6}	$\begin{aligned} & 8.19(\mathrm{dd}, J=8, J=4,1 \mathrm{H}, \mathrm{H}-6), 8.66(\mathrm{dd}, J=8, J=2,1 \mathrm{H}, \mathrm{H}-5), 9.43(\mathrm{dd}, J=4, J=2,1 \mathrm{H}, \mathrm{H}-7), 10.23 \\ & (\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3) \end{aligned}$
33b	CDCl_{3}	3.19 (s, 3 H, CH_{3}), 7.92 (dd, $\left.J=8, J=4,1 \mathrm{H}, \mathrm{H}-6\right), 8.39$ (dd, $J=8, J=2, \mathrm{H}-5$), 9.25 (dd, $J=4, J=2, \mathrm{H}-7$)
33c	DMSO- d_{6}	$7.50(\mathrm{~m}, 2 \mathrm{H}$, phenyl), $8.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 8.63(\mathrm{~m}, 3 \mathrm{H}$, phenyl and $\mathrm{H}-5), 9.30(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7)$
37a	CDCl_{3}	3.13 ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 7.85(\mathrm{~m}, 3 \mathrm{H}$, phenyl), 8.50 ($\mathrm{m}, 1 \mathrm{H}$, phenyl)
37b	CDCl_{3}	$7.60(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4$, and $\mathrm{H}-5$ of phenyl side chain), 7.83 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6$ or $\mathrm{H}-7$ of fused phenyl), 7.97 (m, 1 H , H-6 or H-7 of fused phenyl), 8.10 ($\mathrm{d}, J=8.3,1 \mathrm{H}, \mathrm{H}-5$ or $\mathrm{H}-8$ of fused phenyl), 8.54 (d, $J=7.8,1 \mathrm{H}, \mathrm{H}-5$ or $\mathrm{H}-8$ of fused phenyl), $8.77(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-6$ of phenyl side chain)
43a	CDCl_{3}	8.00 (m, 2 H, H-8 and H-9), $8.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 9.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-7), 9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5), 10.2(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3)$
43b	CDCl_{3}	3.25 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 7.95 (m, $2 \mathrm{H}, \mathrm{H}-8$ and $\left.\mathrm{H}-9\right), 8.33$ (m, $\left.1 \mathrm{H}, \mathrm{H}-10\right), 9.41$ (m, $\left.1 \mathrm{H}, \mathrm{H}-7\right), 9.54$ (s, $1 \mathrm{H}, \mathrm{H}-5$)
43c	CDCl_{3}	$\begin{aligned} & 8.00(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-8 \text { and } \mathrm{H}-9), 8.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-10), 8.63(\mathrm{~d}, J=6,2 \mathrm{H}, \text { pyridyl), } 8.95(\mathrm{~d}, J=6,2 \mathrm{H}, \text { pyridyl }), 9.46 \\ & (\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-7), 9.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5) \end{aligned}$
46a	CDCl_{3}	1.59 (s, $6 \mathrm{H}, \mathrm{CH}_{3}$'s), 4.27 [s (br), $\left.1 \mathrm{H}, \mathrm{NH}\right], 7.59$ (dd, $J=7.4, J=7,1 \mathrm{H}, \mathrm{H}-8$ or H-9), 7.66 (dd, $J=7.4, J=7,1 \mathrm{H}$, H-8 or H-9), 8.02 (d, $J=7,1 \mathrm{H}, \mathrm{H}-10$), 8.58 (d, $J=7,1 \mathrm{H}, \mathrm{H}-7$), 8.59 (s, $1 \mathrm{H}, \mathrm{H}-5$)
46b	CDCl_{3}	1.65 (m, 6 H , cyclohexyl), 1.90 (m, 2 H , cyclohexyl), 2.11 (m, 2 H , cyclohexyl), 4.00 [s (br), $1 \mathrm{H}, \mathrm{NH}$], 7.56 (dd, $J=7.4, J=7,1 \mathrm{H}, \mathrm{H}-8$ or $\mathrm{H}-9$), 7.65 (dd, $J=7.4, J=7,1 \mathrm{H}, \mathrm{H}-8$ or $\mathrm{H}-9$), $8.00(\mathrm{~d}, J=7,1 \mathrm{H}, \mathrm{H}-10$), 8.55 (d, $J=7,1 \mathrm{H}, \mathrm{H}-7$), $8.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-5)$

${ }^{a}$ The chemical shifts are recorded in δ values and the coupling constants in hertz. The spectra were recorded in the solvent specified with tetramethylsilane as internal reference. The NMR peaks are designated as follows: s, singlet; d, doublet; t , triplet; q , quartet; br, broad. ${ }^{b}$ The 3-substituted pyrido[3,4-e]-1,2,4-triazines (10) displayed resonances in the following ranges: $8.28-8.58$ (dd, $J=6-7, J=1$, or d, $J=$ $6,1 \mathrm{H}, \mathrm{H}-8$); 8.86-9.25 (d, $J=6-7,1 \mathrm{H}, \mathrm{H}-7$); 9.94-9.98 (s or $\mathrm{d}, J=1,1 \mathrm{H}, \mathrm{H}-5$). Spectral data unique to specific compounds are given in the table. ${ }^{c} \mathrm{IR}(\mathrm{KBr}) \nu 2235 \mathrm{~cm}^{-1}(\mathrm{CN})$.

Table IX. Antifungal Activity. Range of Minimum Inhibitory Concentrations ($\mu \mathrm{g} / \mathrm{mL})^{a}$

compd no.	organism (no. of strains) ${ }^{\text {b }}$									
	C.a. (4)	C.p. (1)	C.t. (2)	C.ps. (2)	C.r. (1)	C.s. (1)	A.n. (4)	T.m. (3)	T.r. (2)	M.f. (1)
10a	8-16	16	8-16	4	8	8	16-32	2-4	1-2	8
10b	8-16	16	8	8	16	32	16-32	16	4-8	16
10c	32-64	64	32-64	16	64	64	32-64	32	8-32	64
10d	128		128	128	>128	>128	128			128
10e	64	64	64	64			64	32-64	16-32	
10 f	16-32		32	8-16	16	16	32			8
10 g	8-16		16	8-16	8	16	16-32			4
10 h	16		32	16	64	64	32			16
10 i	8-16		32	16	32	32	16-32			16
10 j	8-16		64	16	16	32	16-32			4
10k	16-64	64	32-64	32	32	32	32-64	16	4-16	64
101	16	16	8-16	8-16	32	16	16-32	8	2-4	>128
10 m	32	32	32	32	16	32	16	8	2-4	64
10n	16	16	8-16	8	16	32	16-32	4	1-2	16
100	8-16	8	8-16	8	8	8	16-32	4-8	4	64
10p	16-32	16	16	32			16-32	8	2	
10q	16	16	4-16	8			32-64	4	1-2	
10r	128		128	128	>128	>128	128			128
10s	64-128	128	128	128	>128	>128	128	64	8-32	>128
10 t	64	64	8-32	4-8	>128	128	32-128	4-8	2-4	128
10 u	128		128	128	>128	>128	64-128			128
10 v	64	64	64	32			32-128	8	2-4	
10w	64		64	64	>128	>128	64-128			128
10x	64-128		128	64	128	128	128			128
$10 y$	128		128	128	>128	>128	128			128
10z	64	64	64	32-64	64	16	32	32	2-4	64
10aa	$8-16$	16	4-16	4	16	32	16-32	4	1-2	>128
10bb	8	8	4-8	2-4	32	32	8-16	4	2-4	32
10cc	64		64	32	64	64	32-64			64
10dd	8		8	8	32	32	32			32
12a	64		128	128	16	16	64-128			64
12b	64-128	128	128	128			64-128	16	4-8	
12c	128		128	128	32	32	64-128			128
19 a	16-32	64	16-32	8			32	8-32	4	
19b	8-16	128	8-32	8-16			64	8	8	
19c	16	32	16-32	8-16			32-64	8-16	8-16	
25a	4-8	16	4-8	4-8			32	4-8	4	
25b	8		32	8-16	64	64	32-128	8-32	16-32	16
25c	128		128	128	>128	>128	128	64	64	64
25d	32-64		128	32	32	32	64-128	32-128	64-128	>128
25 e	128	128	128	64-128			128	32-64	32-64	
255	>128	>128	>128		>128	>128	>128	128	128	128
25g	128		128	128	>128	>128	64-128	32	16	64
26a	128	128	128	128			128	64-128	32-128	
26b	128	128	128	128			128	64-128	32-64	
30a	128	128	128	128			128	128	128	
30b	128	128	128	128			128	32-64	32-64	
30c	128	128	32-128	1-32			128	16-32	32	
33a	64	32	64	32			16-32	32	32	
33b	128	64	128	128			32-64	128	128	
33b ${ }^{\prime}$	64	64	64	64			32-64	32-64	8-32	
33c	128		128	128	128	128	16-128	32	>128	
37a	128	128	64-128	128			128	64-128	64-128	
37b	64		128	128	128	128	128		64	
43a	8-16	16	16	8			8-16	4	4-8	
43b	32	32	32	32			16-32	32	32	
43c	128	128	128	2-4			64-128	64	64	
46a	128	128	128	128			128	64-128	64-128	
46 b	128	128	128	128			128	64	64	
amphotericin	0.25-0.5	0.5	0.25-0.5	0.5	>128	>128	0.5	1	0.5	0.25
miconazole	8-16	16	8-16	0.25-4	8	8	8	2	1	8
nystatin	16	16	16	8	>128	>128	16	16-32	32	16

[^6]The resulting solid was collected by filtration, washed with HOAc $(2 \times)$, recrystallized from methyl Cellosolve ($2 x$), and dried in vacuo $\left(60^{\circ} \mathrm{C}\right)$. The yield was $1.07 \mathrm{~g}(46 \%)$ of orange crystals: mp
$280-285^{\circ} \mathrm{C}$; IR (KBr) $\nu 1660 \mathrm{~cm}^{-1}(\mathrm{CO})$.
\boldsymbol{N}-[3-(4-Fluorophenyl)-5,7-dimethylpyrido[3,4-e]-1,2,4-triazin-8-yl]benzamide (26b). A solution of $2.75 \mathrm{~g}(0.0102 \mathrm{~mol})$
of $25 f$ and $1.30 \mathrm{~mL}(1.58 \mathrm{~g}, 0.0112 \mathrm{~mol})$ of benzoyl chloride in 50 mL of pyridine was heated on a steam bath for 2 h . Solvent was removed in vacuo, and the residue was triturated with $\mathrm{H}_{2} \mathrm{O}$ and then extracted several times with CHCl_{3}. The organic extracts were combined, washed with $\mathrm{H}_{2} \mathrm{O}(2 \times)$, dried, and evaporated. The residue was recrystallized from methyl Cellosolve ($2 \times$) to give $0.285 \mathrm{~g}(8 \%)$ of brown crystals: $\mathrm{mp} 242-244^{\circ} \mathrm{C}$; IR (KBr) $\nu 1662$ cm^{-1} (CO).

1,2,3,4-Tetrahydro-3,3-dimethylpyrido[3,4-e]-1,2,4-triazine Dihydrochloride (29a). Compound 4 was reduced to 27 as described previously and used immediately after drying in vacuo. The aminohydrazine ($4.03 \mathrm{~g}, 0.0324 \mathrm{~mol}$) was dissolved in 100 mL of EtOH and treated with $4.76 \mathrm{~mL}(3.77 \mathrm{~g}, 0.0649 \mathrm{~mol})$ of acetone and 22 mL of EtOH saturated with HCl . The reaction was stirred overnight and then refluxed for 1 h . It was filtered and the resulting solid was washed with EtOH and dried in vacuo $\left(65^{\circ} \mathrm{C}\right)$. The yield of off-white crystals was $5.28 \mathrm{~g}(69 \%)$ and had mp $185-187^{\circ} \mathrm{C}$ dec. Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.
$1^{\prime}, 4^{\prime}$-Dihydrospiro[cyclohexane-1, $3^{\prime}\left(2^{\prime} \boldsymbol{H}\right)$-pyrido[3,4-e][1,2,4]triazine] dihydrochloride (29b) was prepared as above in 64% yield from 4 and cyclohexanone, giving off-white crystals, $\mathrm{mp} 184-186^{\circ} \mathrm{C}$ dec. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}, \mathrm{Cl}$.

3-Ethyl-1,2,3,4-tetrahydro-3-(phenylmethyl) pyrido[3,4-e]-1,2,4-triazine hydrochloride (29 c) was prepared in 83% yield from 4 and 1-phenyl-2-butanone, giving off-white crystals, mp $100-110^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \cdot 1.625 \mathrm{HCl} \cdot 0.625 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N} ; \mathrm{Cl}:$ calcd, 17.74; found, 17.31 .

Compounds 30 were prepared by oxidation of 29 with excess activated MnO_{2}. Product purification is given below

3,4-Dihydro-3,3-dimethylpyrido[3,4-e]-1,2,4-triazine (30a) was filtered through Magnesol ($10 \% \mathrm{MeOH}$ in EtOAc), recrystallized from PhCH_{3}, and again filtered through Magnesol (EtOAc). After drying in vacuo, the yield was 48% of orange crystals.

Spiro[cyclohexane-1,3'(4'H)-pyrido[3,4-e][1,2,4]triazine] (30b) was filtered twice through Magnesol ($10 \% \mathrm{MeOH}$ in EtOAc, then EtOAc) to give a 63% yield of orange crystals.

3-Ethyl-3,4-dihydro-3-(phenylmethyl)pyrido[3,4-e]-1,2,4triazine (30c) was filtered through Magnesol (EtOAc), recrystallized twice from PhCH_{3} and dried in vacuo ($64^{\circ} \mathrm{C}$) to give a 57% yield of orange crystals. The side chains of this compound show restricted rotation.

2-Hydrazino-3-nitropyridine (34) ${ }^{6 \mathrm{~b}}$ was prepared by reaction of 2-chloro-3-nitropyridine with $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in MeOH at 25 ${ }^{\circ} \mathrm{C}$ overnight. After solvent removal, the residue was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was drawn off, dried, and evaporated to give a quantitative yield of orange-brown crystals. This material was used without further purification.

An analytical sample was prepared by recrystallization from EtOH, mp $165.5-167.5^{\circ} \mathrm{C}$ (lit. $170-171^{\circ} \mathrm{C}$). Anal. $\left(\mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N}_{4} \mathrm{O}_{2}\right.$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

Pyrido[3,2-e]-1,2,4-triazine (33a). ${ }^{\text {bb }}$ This compound was prepared from 34 by reduction to the amine, cyclization, and dehydrogenation (Figure 6). Intermediates were not purified. The crude product from MnO_{2} oxidation was filtered through Magnesol ($5 \% \mathrm{MeOH}$ in CHCl_{3}) and recrystallized from EtOH to give red-orange crystals, $\mathrm{mp} 145-148{ }^{\circ} \mathrm{C}$ (lit. $151-152^{\circ} \mathrm{C}$).

Acetic Acid 2-(3-Nitro-2-pyridyl)hydrazide (32b). ${ }^{\text {bb }}$ A mixture of $10.0 \mathrm{~g}(0.0631 \mathrm{~mol})$ of 2-chloro-3-nitropyridine, 5.84 $\mathrm{g}(0.0789 \mathrm{~mol})$ of acethydrazide, and $16.5 \mathrm{~mL}(12.2 \mathrm{~g}, 0.0947 \mathrm{~mol})$ of $i-\mathrm{Pr}_{2} \mathrm{NEt}$ in 130 mL of $t-\mathrm{BuOH}$ was refluxed overnight. The solvent was removed in vacuo, and the residue was filtered through Magnesol ($10 \% \mathrm{MeOH}$ in CHCl_{3}) and recrystallized from EtOH . Filtration yielded 5.9 g of scarlet crystals. The evaporated mother liquors were boiled with hexanes and diluted with EtOH to obtain additional product, 3.38 g of red crystals. Both products were red initially and slowly turned yellow on standing. This has been ascribed to polymorphs. ${ }^{8 \mathrm{~b}}$ An analytical sample of this material could not be obtained, and it was used as is: ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) $\delta 1.95$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 6.95 (dd, $J=8 \mathrm{~Hz}, J=5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5$), 8.50 (m, $2 \mathrm{H}, \mathrm{H}-4, \mathrm{NH}$), 9.74 [s (br), $1 \mathrm{H}, \mathrm{H}-6], 10.25$ (s, $1 \mathrm{H}, \mathrm{NH}$).

1,2-Dihydro-3-methylpyrido[3,2-e]-1,2,4-triazine Hydrochloride ($33 \mathrm{~b}^{\prime}$). ${ }^{6 \mathrm{bb} .8 \mathrm{~b}}$ Compound 32b ($9.3 \mathrm{~g}, 0.0474 \mathrm{~mol}$) was hydrogenated in 200 mL of EtOH containing 0.8 g of $5 \% \mathrm{Pd} / \mathrm{C}$ catalyst. The crude product was a tan foam (8.0 g). It was slurried in 150 mL of $\mathrm{EtOH}, 40 \mathrm{~mL}$ of EtOH saturated with HCl was added, and the mixture was stirred overnight. Solvent was then
removed, and the residue was recrystallized from EtOH to yield $5.31 \mathrm{~g}(41 \%$ from 31$)$ of yellow crystals, $\mathrm{mp} 214-216^{\circ} \mathrm{C}$ dec. Lewis and Shepherd ${ }^{\text {6b }}$ report $220^{\circ} \mathrm{C}$ and Gelleri et al. ${ }^{\text {8b }}$ report 218-219 ${ }^{\circ} \mathrm{C}$ for the dihydrochloride salt. Our microanalytical data fit for the monohydrochloride monohydrate. Anal. Calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClN}_{4} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 41.49 ; \mathrm{H}, 5.47$; $\mathrm{N}, 27.65 ; \mathrm{Cl}, 17.50$. Found: C, 41.40; H, 5.35; N, 27.88; Cl, 17.61.

A Karl Fischer water analysis could not be done due to the reducing nature of the substrate.

The mother liquors from the first crop were evaporated to give an additional 3.3 g of material which was used in the next oxidation step.

3-Methylpyrido[3,2-e]-1,2,4-triazine (33b). ${ }^{6 b, 8 b}$ The corresponding dihydro compound ($\mathbf{3 3 b}^{\prime}, 7.11 \mathrm{~g}, 0.0323 \mathrm{~mol}$) was dissolved in 150 mL of $\mathrm{H}_{2} \mathrm{O}$, neutralized with 5 M NaOH , and treated with $11.2 \mathrm{~g}(0.129 \mathrm{~mol})$ of activated MnO_{2} for 1.25 h . The mixture was filtered through Celite, the filter cake was washed with $\mathrm{H}_{2} \mathrm{O}$ and EtOH , and the combined filtrate and washings were evaporated. The residue was heated with $5 \% \mathrm{MeOH}$ in CHCl_{3} and filtered. The filtrate was partially evaporated and passed through Magnesol. The eluent was evaporated and the residue was recrystallized from EtOH. The yield was 3.35 g (44% from 31) of orange needles, mp $170-171^{\circ} \mathrm{C}$ (lit. ${ }^{6 \mathrm{~b}} 171-17{ }^{\circ} \mathrm{C}$).

3-(4-Fluorophenyl)pyrido[3,2-e]-1,2,4-triazine (33c). Compound 32 c was prepared from 2 -chloro-3-nitropyridine, 4fluorobenzhydrazide, and triethylamine as described for 32b. The resulting material was hydrogenated ($5 \% \mathrm{Pd} / \mathrm{C}, 95 \% \mathrm{EtOH}$) and cyclized with ethanolic HCl . The dihydro compound was dissolved in $\mathrm{H}_{2} \mathrm{O}$, neutralized with $\mathrm{NH}_{4} \mathrm{OH}$, and treated with $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ for 3 min . The crude final product was filtered through Magnesol ($5 \% \mathrm{MeOH}$ in CHCl_{3}) and recrystallized from methyl Cellosolve to give a 30% yield (overall from 31) of red-brown crystals, mp $223-224^{\circ} \mathrm{C}$.

Acetic Acid 2-(2-Nitrophenyl)hydrazide (36a). A solution of 1-fluoro-2-nitrobenzene ($14.8 \mathrm{~g}, 0.105 \mathrm{~mol}$) and acethydrazide $(7.40 \mathrm{~g}, 0.100 \mathrm{~mol})$ in 100 mL of methyl Cellosolve was refluxed for 5.5 h . Solvent was removed in vacuo and the residual redorange oil was crystallized with acetone. This yielded 7.23 g of orange solid which was slurried with $\mathrm{H}_{2} \mathrm{O}$, adjusted to pH 8 with aqueous NaHCO_{3}, and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were dried and evaporated to yield $2.07 \mathrm{~g}(11 \%)$ of yellow-orange solid, mp $139-142^{\circ} \mathrm{C}\left(\right.$ lit. $^{20} 142-144{ }^{\circ} \mathrm{C}$). Anal. ($\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$) C, H, N. This product was carried through the subsequent steps.

3 -Methylbenzo-1,2,4-triazine (37a). Crude 36a was hydrogenated in 50% aqueous EtOH containing 6 M HCl and $5 \% \mathrm{Pd} / \mathrm{C}$ as catalyst. The product from this reaction was dissolved in 60 mL of EtOH and then chilled to $-20^{\circ} \mathrm{C}$. After filtration, the solution was diluted with 100 mL of EtOH and 25 mL of 6 M HCl and refluxed for 1.5 h . Solvent was evaporated, and the residue was redissolved in 200 mL of $\mathrm{H}_{2} \mathrm{O}$ and treated with excess activated MnO_{2} for 2 h . The reaction was filtered through Celite, and the filter cake was washed well with $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The aqueous filtrate was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic material was combined and evaporated. The residue was filtered through Magnesol (10% EtOAc in hexanes), and the solvent was removed in vacuo to give 0.220 g (1% from 35) of yellow-brown solid, mp $89-9{ }^{\circ} \mathrm{C}$ (lit. ${ }^{20} 97-98^{\circ} \mathrm{C}$). Anal. $\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Benzoic acid 2-(2-nitrophenyl)hydrazide (36b) was prepared in the same way as 36 a ; reflux time was 20 h . The evaporated reaction mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered, washed with aqueous KHCO_{3}, and $\mathrm{H}_{2} \mathrm{O}$, dried, and evaporated. The residue was recrystallized from EtOH (Darco) to give 10.6 g (41%) of orange crystals, $\mathrm{mp} 172-174^{\circ} \mathrm{C}$ (lit. ${ }^{20} 163-165^{\circ} \mathrm{C}$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
3-Phenylbenzo-1,2,4-triazine (37b). Compound 36b was hydrogenated in absolute EtOH containing $5 \% \mathrm{Pd} / \mathrm{C}$. The crude product was recrystallized from EtOAc to give 84% of white crystals, mp $165-166^{\circ} \mathrm{C}$ (lit. ${ }^{20} 163-164^{\circ} \mathrm{C}$). Anal. ($\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$.

The amine was cyclized and oxidized according to ref 19 . The crude benzotriazine was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated. Elution of the residue through Magnesol with hexanes-EtOAc (8:1) and recrystallization from cyclohexane gave $\mathbf{3 7 b}$ (12% from
35) as orange-brown crystals, mp $120-124^{\circ} \mathrm{C}$ (lit. ${ }^{20} 126-127^{\circ} \mathrm{C}$). Anal. $\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
4-Chloro-3-nitroquinoline (42) ${ }^{99}$ This material was prepared according to refs 9 a and 15 , but with the following modifications. Compound 40 was refluxed with $\mathrm{Ac}_{2} \mathrm{O}$ for 1 h . The reaction was held at $100^{\circ} \mathrm{C}$ while anhydrous NaOAc was added. Stirring was continued at room temperature overnight. The crude product was isolated by pouring the reaction into $\mathrm{H}_{2} \mathrm{O}$. Chlorination was accomplished by heating the crude anhydrous nitroquinoline in a mixture of POCl_{3} and PCl_{5}. After reaction was complete, volatiles were removed in vacuo and the residue was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This solution was slowly poured into excess ice-cold $\mathrm{NH}_{4} \mathrm{OH}$ and filtered to remove insoluble 41. The organic layer was removed and combined with two additional $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts of the aqueous layer. Drying of the extract, filtration through Magnesol, and solvent removal gave crude 42 as light yellow crystals. This material was stable when stored cold and was used as is.

1,2,4-Triazino[5,6-c]quinoline (43a). 4-Hydrazino-3-nitroquinoline was prepared from 42 and $\mathrm{H}_{2} \mathrm{NNH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(i-\mathrm{PrOH}$, room temperature, 20 h). It was then converted to 43 a by the procedure used for 10a. Oxidation was with MnO_{2}. The crude product was filtered through Magnesol (EtOAc) and recrystallized from EtOH to give orange crystals (45% overall from 42), $\mathrm{mp} 162-163^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-Methyl-1,2,4-triazino[5,6-c]quinoline (43b) was prepared from 42 and acethydrazide in the same way as the analogous pyridotriazine. After oxidation with MnO_{2}, the crude product was filtered through Magnesol (EtOAc) and evaporated to give yellow crystals (21% overall from 42), mp $128-130^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

3-(4-Pyridinyl)-1,2,4-triazino[5,6-c]quinoline (43c) was prepared from 42 and isonicotinic acid hydrazide in the same way as the analogous pyridotriazine. After oxidation with MnO_{2}, the crude product was recrystallzed from methyl Cellosolve ($2 \times$) to give orange crystals (25% overall from 42), mp $216-217^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 69.49; found, 69.02.

3,4-Dihydro-3,3-dimethyl-1,2,4-triazino[5,6-c]quinoline (46a). 4-Hydrazino-3-nitroquinoline was hydrogenated over 10% Pd / C. A slurry of $1.18 \mathrm{~g}(0.00671 \mathrm{~mol})$ of the reduction product (44) in 100 mL of acetone was refluxed for 1.5 h with 3.5 mL of ca. 6 M anhydrous HCl in absolute EtOH . The crude product (1.5 g) was collected by filtration, dissolved in 50 mL of $\mathrm{H}_{2} \mathrm{O}$, neutralized (1 M NaOH), and treated with $\mathrm{MnO}_{2}(2.60 \mathrm{~g}, 0.0299$ mol). Recrystallization from PhCH_{3} gave 0.460 g (35% from the nitrohydrazine) of orange crystals, mp $166-168{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Spiro[cyclohexane-1, $3^{\prime}\left(4^{\prime} H\right)$ - $[1,2,4]$ triazino[5,6-c]quinoline] ($46 \mathbf{b}$). A mixture of $4.0 \mathrm{~g}(0.0230 \mathrm{~mol})$ of $44,6.37 \mathrm{~g}$ (0.0459 mol) of cyclohexanone, and 22 mL of ca. 6 M anhydrous HCl in absolute EtOH was refluxed for 2 h . The reaction mixture was evaporated, and the residue was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times)$ to give crude 45b. This was oxidized with MnO_{2} as above. Filtration through Magnesol (EtOAc) and recrystallization from EtOAchexanes gave $0.53 \mathrm{~g}(19 \%$ from the nitrohydrazine) of red-orange crystals, mp $146-148^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Acknowledgment. We thank Dr. J. Baldoni and Mr.
G. Morton and their associates for spectroscopic data. Mass spectra were done by Dr. M. Siegel and Mr. K. Angyal. Microanalytical data were obtained from Mr. H. Ferrari and Dr. J. James and their staff. We thank Mr. E. Pelcak for the biological testing and Mr. M. Jennings for technical assistance.

Registry No. 1, 626-64-2; 2, 5435-54-1; 3, 13091-23-1; 4, 33544-42-2; 7s, 121845-42-9; 7u, 121845-72-5; 8s, 121845-43-0; 9a, 76603-03-7; 9s, 121845-44-1; 10a, 767-95-3; 10b, 14612-29-4; 10c, 121845-45-2; 10d, 121845-46-3; 10e, 121845-47-4; 10f, 121845-48-5; $10 \mathrm{~g}, 55242-75-6 ; 10 \mathrm{~h}, 121845-49-6 ; 10 \mathrm{i}, 121845-50-9 ; 10 \mathrm{j}$, 121845-51-0; 10k, 121845-52-1; 101, 40848-48-4; 10m, 121845-53-2; 10n, 121845-54-3; 100, 121845-55-4; 10p, 121845-56-5; 10q, 121845-57-6; 10r, 121845-58-7; 10s, 121845-59-8; 10t, 121845-60-1; 10u, 121845-61-2; 10v, 121845-62-3; 10w, 121845-63-4; 10x, 60445-73-0; 10y, 121845-64-5; 10z, 121845-65-6; 10aa, 121845-66-7; 10bb, 60097-07-6; 10cc, 121845-67-8; 10dd, 121845-68-9; 11, 5815-08-7; 12a, 121845-69-0; 12b, 121845-70-3; 12c, 121845-71-4; 16, 18437-58-6; 17, 18614-65-8; 18, 23056-35-1; 19a, 121845-73-6; 19b, 121845-74-7; 19c, 121845-75-8; 21, 7516-31-6; 22, 13603-45-7; 23, 31872-55-6; $24\left(\mathrm{R}_{1}=\mathrm{H}\right), 15513-48-1 ; 24\left(\mathrm{R}_{1}=\mathrm{NO}_{2}\right), 25370-51-8$; 25a, 121845-76-9; 25b, 121845-77-0; 25c, 121845-78-1; 25d, 121845-79-2; 25e, 121845-80-5; 25f, 121845-81-6; 25g, 121845-82-7; 26a, 121845-83-8; 26b, 121845-84-9; 27, 31481-86-4; 29a, 121845-85-0; 29b, 121845-86-1; 29c, 121845-87-2; 30a, 121845-88-3; 30b, 121845-89-4; 30c, 121845-90-7; 32b, 30962-70-0; 33a, 6133-44-4; 33b, 30962-73-3; 33 \mathbf{b}^{\prime}, 121865-30-3; 33 \mathbf{b}^{\prime} (free base), 30962-74-4; 33c, 121845-91-8; 34, 15367-16-5; 36a, 14674-17-0; 36b, 14674-18-1; 37a, 6299-94-1; 37b, 6299-90-7; 38, 5653-21-4; 39, 118-92-3; 40, 121845-92-9; 41, 50332-66-6; 42, 39061-97-7; 43a, 39862-58-3; 43b, 51093-11-9; 43c, 51093-88-0; 44, 60050-66-0; 45a, 121845-93-0; 45b, 121845-95-2; 46a, 121845-94-1; 46b, 121845-96-3; $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCOCl}$, 3282-30-2; $\mathrm{PhOCH} 2 \mathrm{COCl}, 701-99-5 ; \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CONHNH}_{2}$, 3538-65-6; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CONHNH}_{2}, 4130-54-5 ; p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{CONHNH}_{2}$, 456-06-4; $p-\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CC}_{6} \mathrm{H}_{4} \mathrm{CONHNH}_{2}, \quad 43100-38-5 ; \quad p$ $\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{CONHNH}_{2}, \quad 18622-23-6 ; p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CONHNH}_{2}$, 19353-92-5; 4-(trifluoromethyl)benzoyl chloride, 329-15-7; trifluoroacetic anhydride, 407-25-0; cyclopropanecarbonyl chloride, 4023-34-1; cyclobutanecarbonyl chloride, 5006-22-4; cyclopentanecarbonyl chloride, 4524-93-0; o-fluorobenzoyl chloride, 393-52-2; m-fluorobenzoyl chloride, 1711-07-5; p-fluorobenzoyl chloride, 403-43-0; 2,4-difluorobenzoyl chloride, 72482-64-5; 3,4difluorobenzoyl chloride, 76903-88-3; p-cyanobenzoyl chloride, 6068-72-0; 3,4,5-trimethoxybenzoyl chloride, 4521-61-3; 2naphthoyl chloride, 2243-83-6; 2-quinoxalinecarboxylic acid chloride, 54745-92-5; cyclohexanecarbonyl chloride, 2719-27-9; acetohydrazide, 1068-57-1; benzohydrazide, 613-94-5; 4-ethoxybenzohydrazide, 58586-81-5; 2-pyridinecarboxylic acid hydrazide, 1452-63-7; 3-pyridinecarboxylic acid hydrazide, 553-53-7; 4pyridinecarboxylic acid hydrazide, 54-85-3; 2-pyrazinecarboxylic acid hydrazide, 768-05-8; methyl pyrazinecarboxylate, 6164-79-0; N -methylpiperazine, 109-01-3; 4-nitro-2-picoline N -oxide, 5470 -66-6; 2-methyl-3-nitro-4-pyridinol, 18614-66-9; cyclohexanone, 108-94-1; 1-phenyl-2-butanone, 1007-32-5; 2-chloro-3-nitropyridine, 5470-18-8; 1-fluoro-2-nitrobenzene, 1493-27-2; benzoic acid 2-(2aminophenyl)hydrazide, 6299-88-3; 4-hydrazino-3-nitroquinoline, 23589-54-0; nitromethane, 75-52-5.

[^0]: (1) A portion of this work has been previously presented. Reich, M. F.; Fabio, P. F.; Lee, V. J.; Kuck, N. A.; Testa, R. T. Ann. N.Y. Acad. Sci. 1988, 544, 101.
 (2) Shadomy, S.; Shadomy, H. J; Wagner, G. E. In Antifungal Compounds; Siegel, M. R., Sisler, H. D., Eds.; Marcel Dekker: New York, 1977; Vol. I, Chapter 13.
 (3) (a) Hart, P. D.; Russell, E.; Remington, J. S. J. Infect. Dis. 1969, 120, 169. (b) Edwards, J. E.; Lehrer, R. I.; Stiehm, E. R.; Fischer, T. J.; Young, L. S. Ann. Intern. Med. 1978, 89, 91.
 (4) Seeliger, H. P. R. In Opportunistic Fungal Infections; Chick, E. W., Balows, A., Furcolow, M. L., Eds.; Charles C. Thomas: Springfield, IL, 1975; pp 5-21.
 (5) The Merck Manual of Diagnosis and Therapy, 14th ed.; Berkow, R., Ed.; Merck, Sharp and Dohme: Rahway, 1982; pp 148-159.

[^1]: (12) Nantka-Namirski, P.; Kaczmarczyk, C.; Toba, L. Acta Pol. Pharm. 1967, 24, 231; Chem. Abstr. 1968, 69, 2827.
 (13) Bellingham, P.; Johnson, C. D.; Katritzky, A. R. J. Chem. Soc. B 1968, 866 .

[^2]: (14) Wieczorek, J.; Mordarski, M.; Rykowsi, A.; Nantka-Namirski, P. Arch. Immunol. Ther. Exp. 1985, 33, 339.
 (15) Backman, G. B.; Welton, D. E.; Jenkins, G. L.; Christian, J. E. J. Am. Chem. Soc. 1947, 69, 365.

[^3]: ${ }^{a}$ See Results and Discussion. ${ }^{b}$ Overall from 3 or 4 . ${ }^{\text {c }}$ Analyzes to within $\pm 0.4 \%$ for each element unless otherwise noted. ${ }^{d}$ Compound 9 e must be oxidized with ferricyanide to avoid contamination of the final product with Mn. Compound $10 e$ was purified by flash chromatog-
 from $i-\mathrm{PrOH}$, filtered through Magnesol (EtOAc), and evaporated. ${ }^{h}$ The reaction was evaporated and the residue was filtered through Magnesol (EtOAc) and dried in vacuo.

[^4]: ${ }^{a}$ Overall from 4. ${ }^{b}$ See footnote c, Table I. ${ }^{\text {c }}$ Recrystallized from PhCH , filtered through Magnesol (EtOAc), and evaporated. ${ }^{d}$ Filtered twice through Magnesol ($10 \% \mathrm{MeOH} / \mathrm{EtOAc}$, then EtOAc) and evaporated. ${ }^{e} \mathrm{C}$: calcd, 71.40 ; found, 71.86.

[^5]: (18) Kato, T.; Hayashi, H.; Anzai, T. Yakugaku Zasshi 1967, 87, 387; Chem. Abstr. 1967, 67, 64211.
 (19) Fujimoto, G. Japan Patent 1727, 1957; Chem. Abstr. 1958, 52, 5481 g .

[^6]: ${ }^{a}$ agar dilution assay (see Experimental Section). ${ }^{b}$ Abbreviations: C.a., Candida albicans; C.p., Candida parapsilosis; C.t., Candida tropicalis; C.ps., Candida pseudotropicalis; C.r., Candida rugosa; C.s., Candida stellatoidea; A.n., Aspergillus niger; T.m., Trychophyton mentagrophytes; T.r., Trychophyton rubrum; M.f., Mucor fragilis.

